Logo remediation technology
October 14 - 16, 2025
The Westin
Westminster, CO
Conveniently Located between Boulder & Denver
search
linkedin youtube
  • Create Account
  • Sign Out
  • My Account
October 14 - 16, 2025
The Westin
Westminster, CO
Conveniently Located between Boulder & Denver
Logo remediation technology
  • HOME
  • SUBMIT ABSTRACT
  • REGISTER
    • Registration Fees
    • Register Now!
  • ATTEND
    • Agenda
    • Why Attend The Summit
    • Attended Companies
    • 2024 Photo Gallery
  • PRESENTERS
    • Scientific Advisory Board
    • Platform Presenters
    • Poster Presenters
  • SPONSOR/EXHIBIT
    • Become a Sponsor or Exhibitor
    • Exhibit Floor Plan
    • Exhibitor Resources
    • Event Logos & Ads
  • STUDENTS
    • Student Program
    • Past Student Winners
  • TRAVEL
  • NEWSLETTERS
  • CONTACT
    • Stay Connected
    • Show Staff
Environmental Remediation NewsRemediation Products and TechnologiesWater QualityWaste Water

Single-cell Raman-based tool for efficient mining of live functional microbes from nature

 scRACS-Seq/Culture
November 25, 2022

Currently, the best way for scientists to isolate a specific microbe with a particular metabolic function from an environment is to take a sample of cells, culture them, and then screen them for the desired cell functions.

This method has several limitations. First, scientists have not identified most cells in nature, limiting the results to previously cultured cells. Second, the way cells behave in a test tube is not necessarily how they behave in nature, or in situ. This can make it difficult to identify the right cell with the right metabolic functions.

Researchers from the Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT) of the Chinese Academy of Sciences (CAS) have proposed a new technique called single-cell Raman-activated sorting and cultivation, or scRACS-Culture, to find and harvest cells from the environment by screening the cells first and then culturing them.

The study was published in ISME Communications on Oct. 30.

"Function-based mining of microbes from nature has traditionally employed a 'culture first, screen second' strategy, which has several limitations," says Jing Xiaoyan, paper first-author and a senior engineer from Single-Cell Center of QIBEBT. "By employing phosphate-solubilizing microbes as a model, we introduced a 'screen first' strategy called single-cell Raman-activated sorting and cultivation."

Using a novel instrument called RACS-Seq, the researchers demonstrated the feasibility of scRACS-Culture by mining microbes for in situ organic-phosphate solubilizing activity from an urban wastewater treatment plant. This shows a real-world use case for this technology because such organic-phosphate solubilizing strains are highly sought-after resources, as they can fight pollution in water bodies and soil, promote nutrient absorption of crops, improve fertilizer efficiency, and reduce the use of chemical fertilizers.

The researchers used the scRACS-Culture method to mine such cells directly from a wastewater sample, by looking at their metabolic rate when only organic-phosphate substrates are available. They pointed out that such culture-independent, "screen-first" strategy is advantageous in that it can screen all cells in a microbiome, instead of just those cells that can be cultured.

Moreover, this strategy can evaluate the in-situ function of the cell, which is usually more relevant than the function of a pure-culture in a test-tube. It is also applicable to a wide variety of valuable metabolic functions of cells. "Because this technique can measure a wide range of metabolic phenotypes in a fluorescence-probe-free manner, it should greatly expand the use of function-driven single-cell technologies in microbiome science and industries," says co-first author Gong Yanhai, assistant research fellow at Single-Cell Center of QIBEBT.

To improve the success rate of scRACS-Culture, they envision a strategy that unlocks the target cell's nutrient needs via metabolic reconstruction of its single-cell genome. The knowledge can then be exploited to optimize the culture medium to grow these yet-to-culture single-cells into valuable live-bacteria cultures, for animal and plant health and for environmental remediation.

Looking ahead, the team is planning to further elevate the scale and throughput of the technology, for efficiently mining the "probiotics" from a wide range of ecosystems, according to Prof. Xu Jian from Single-Cell Center of QIBEBT, who led the study.

More information: Xiaoyan Jing et al, Single-cell Raman-activated sorting and cultivation (scRACS-Culture) for assessing and mining in situ phosphate-solubilizing microbes from nature, ISME Communications (2022). DOI: 10.1038/s43705-022-00188-3.

Source: Chinese Academy of Sciences
KEYWORDS: environmental services filtering in-situ water management

Share This Story

Post a comment to this article

Report Abusive Comment

Manage My Account
  • eNewsletter
  • Online Registration
  • Manage My Preferences
  • Customer Service

More Videos

Related Articles

  • Live from ISC West with Thursday Presentations Available via Web

    See More
  • CSIRO

    Microbes hold potential in removing PFAS from recycled waste fertilizer

    See More
  • Phytoremediation

    Researchers to optimize grass, fertilizer selection to create the ideal soil microbes for petroleum contamination

    See More

Related Products

See More Products
  • electro.jpg

    Electrochemical Remediation Technologies for Polluted Soils, Sediments and Groundwater

  • remediation manual.jpg

    Remediation Manual for Contaminated Sites

  • handbook of assisted.jpg

    Handbook of Assisted and Amendment-Enhanced Sustainable Remediation Technology

See More Products

Events

View AllSubmit An Event
  • March 18, 2022

    Retransfer Printing: Only for technology cards? Or is it right for your ID and access card needs?

    Retransfer card printing can provide the ultimate in reliability, durability and card security when printing technology cards. But with entry-level prices dropping, now might be the time to consider this technology for your ID and access cards too. 
  • March 20, 2022

    Challenges of Employing Temporary Part Time Personnel to Secure a Major Sports Facility

    iSecurity is now available On-Demand! All content, exhibitors, webinars and Ask the Expert sessions from both the March and August shows are available for viewing through March 1, 2011.
View AllSubmit An Event

Related Directories

  • ePublishing

    It is a long established fact that a reader will be distracted by the readable content of a page when looking at its layout. The point of using Lorem Ipsum is that it has a more-or-less normal distribution of letters, as opposed to using 'Content here, content here', making it look like readable English. Many desktop publishing packages and web page editors now use Lorem Ipsum as their default model text, and a search for 'lorem ipsum' will uncover many web sites still in their infancy. Various versions have evolved over the years, sometimes by accident, sometimes on purpose (injected humour and the like).
  • Security Magazine

    It is a long established fact that a reader will be distracted by the readable content of a page when looking at its layout. The point of using Lorem Ipsum is that it has a more-or-less normal distribution of letters, as opposed to using 'Content here, content here', making it look like readable English. Many desktop publishing packages and web page editors now use Lorem Ipsum as their default model text, and a search for 'lorem ipsum' will uncover many web sites still in their infancy. Various versions have evolved over the years, sometimes by accident, sometimes on purpose (injected humour and the like).
  • Test Listing 1

    Lorem Ipsum L1 is simply dummy text of the printing and typesetting industry. Lorem Ipsum has been the industry's standard dummy text ever since the 1500s.
×

Get our eNewsletter delivered to your inbox!

Stay in the know on the latest environmental sciences & remediation news and information.

SUBSCRIBE TODAY

BNP Events

Privacy Policy | Code of Conduct | Scam Warning

Copyright ©2025. All Rights Reserved
Design, CMS, Hosting & Web Development :: ePublishing