Logo remediation technology
October 14 - 16, 2025
The Westin
Westminster, CO
Conveniently Located between Boulder & Denver
search
linkedin youtube
  • Create Account
  • Sign Out
  • My Account
October 14 - 16, 2025
The Westin
Westminster, CO
Conveniently Located between Boulder & Denver
Logo remediation technology
  • HOME
  • SUBMIT ABSTRACT
  • REGISTER
    • Registration Fees
    • Register Now!
  • ATTEND
    • Agenda
    • Why Attend The Summit
    • Attended Companies
    • 2024 Photo Gallery
  • PRESENTERS
    • Scientific Advisory Board
    • Platform Presenters
    • Poster Presenters
  • SPONSOR/EXHIBIT
    • Become a Sponsor or Exhibitor
    • Exhibit Floor Plan
    • Exhibitor Resources
    • Event Logos & Ads
  • STUDENTS
    • Student Program
    • Past Student Winners
  • TRAVEL
  • NEWSLETTERS
  • CONTACT
    • Stay Connected
    • Show Staff
TestingSite Cleanup & RedevelopmentSoil SamplingHydrocarbon|Mining Remediation

3D model shows how cadmium exposure may affect heart development

NIH researchers develop new tools to demonstrate how environmental agents can lead to diseases.

cadmium 3D

Model showing how the pluripotent stem cells react to human relevant doses of cadmium over 8 days. From the control in the first panel, to the last panel, researchers can see how the differentiation to cardiomyocytes (as shown by the green fluorescent-positive cells) is inhibited with different doses of cadmium.

January 14, 2023

Researchers have developed a three-dimensional model that shows how exposure to cadmium might lead to congenital heart disease. Affecting nearly 40,000 newborns a year, congenital heart disease is the most common type of birth defect in the United States. The model was created by scientists at the National Institute of Environmental Health Sciences (NIEHS), part of the National Institutes of Health.

Cadmium is a metal that can be released into the environment through mining and various industrial processes, and it has been found in air, soil, water, and tobacco. The metal can enter the food chain when plants absorb it from soil. Previous studies suggested that maternal exposure to cadmium might be a significant risk factor for congenital heart disease.

Using models derived from human cells and tissues, called in vitro models, researchers designed a 3D organoid model that mimics how the human heart develops. The researchers saw how exposure to low levels of cadmium can block usual formation of cardiomyocytes, which are the major type of cells that form the heart. In doing so, they revealed the biological mechanisms that might explain how cadmium could induce heart abnormalities.

“The models we created are useful for not only studying cadmium, but for studying other chemicals and substances as well,” says study lead Erik Tokar, Ph.D., from the Mechanistic Toxicology Branch of the NIEHS Division of Translational Toxicology (DTT).

For the study, the researchers developed three different models to evaluate the effects of cadmium on different stages of heart development.

First, they used human pluripotent stem cells to develop 3D embryoid bodies to mimic early steps in tissue and organ formation in humans. They then used a 2D in vitro model that included a fluorescent regulatory protein system (NKX2-5) known to be involved in heart development, which allowed them to look at cadmium toxicity after exposure.

The 3D cardiac organoid model, which can simulate the beating heart, confirmed what was seen in the other two models, showing how low doses of cadmium can inhibit the cardiomyocytes from functioning properly.

The study, published in the journal Environmental Health Perspectives, builds on decades of work by toxicology researchers to advance knowledge about how environmental exposures may contribute to human diseases including cancer, cardiovascular disease, autism, and other conditions.

“These new models are leveraging advances in technology that allow us to model human biology in a way that identifies real human health hazards,” notes Brian Berridge, D.V.M., Ph.D., scientific director, DTT. “They also help reduce our reliance on animal testing.”

“We found that early exposure to human-relevant levels of cadmium lead to a dramatic inhibitory effect on cardiomyocyte differentiation, whereas later stage exposures did not have this effect,” says Xian Wu, Ph.D., who conducted these studies. “This cadmium exposure also damaged the cardiac organoid functionality.”

Grants: This research was supported by the Intramural Research Program (Translational Toxicology Division) of the NIH, NIEHS (ZIAES102925).

Reference: Wu X, Chen Y, Hu G, and Tokar EJ. 2022. Cardiac Development in the Presence of Cadmium: An in vitro Study Using Human Embryonic Stem Cells and Cardiac Organoids. Environmental Health Perspectives. [Full Text]

Source: The National Institute of Environmental Health Sciences
KEYWORDS: cadmium contaminated soil degradation environmental services

Share This Story

Post a comment to this article

Report Abusive Comment

Manage My Account
  • eNewsletter
  • Online Registration
  • Manage My Preferences
  • Customer Service

More Videos

Related Articles

  • Erdogan

    Study reveals how 'forever chemicals' may impact heart health in older women

    See More
  • Presumptive PFAS

    Model highlights widespread PFAS exposure across the USA

    See More
  • Fracking platform

    Research links groundwater contamination to shale gas, legacy energy development

    See More

Related Products

See More Products
  • Security Convergence

  • bioremediation.jpg

    Bioremediation of Agricultural Soils

See More Products

Related Directories

  • Test Listing 1 - Dup 3

    Lorem Ipsum L1 is simply dummy text of the printing and typesetting industry. Lorem Ipsum has been the industry's standard dummy text ever since the 1500s.
  • ePublishing

    It is a long established fact that a reader will be distracted by the readable content of a page when looking at its layout. The point of using Lorem Ipsum is that it has a more-or-less normal distribution of letters, as opposed to using 'Content here, content here', making it look like readable English. Many desktop publishing packages and web page editors now use Lorem Ipsum as their default model text, and a search for 'lorem ipsum' will uncover many web sites still in their infancy. Various versions have evolved over the years, sometimes by accident, sometimes on purpose (injected humour and the like).
  • Security Magazine

    It is a long established fact that a reader will be distracted by the readable content of a page when looking at its layout. The point of using Lorem Ipsum is that it has a more-or-less normal distribution of letters, as opposed to using 'Content here, content here', making it look like readable English. Many desktop publishing packages and web page editors now use Lorem Ipsum as their default model text, and a search for 'lorem ipsum' will uncover many web sites still in their infancy. Various versions have evolved over the years, sometimes by accident, sometimes on purpose (injected humour and the like).
×

Get our eNewsletter delivered to your inbox!

Stay in the know on the latest environmental sciences & remediation news and information.

SUBSCRIBE TODAY

BNP Events

Privacy Policy | Code of Conduct | Scam Warning

Copyright ©2025. All Rights Reserved
Design, CMS, Hosting & Web Development :: ePublishing