REMTEC EMERGING CONTAMINANTS SUMMIT

OCTOBER 3-5, 2023

Combined removal of recalcitrant pharmaceuticals and greenhouse gas using constructed wetlands

J.O. Sharp, Colorado School of Mines

OCTOBER 3-5, 2023

The village: co-authors & collaborators

Colorado School of Mines

Michael Vega

Adam Brady

Lily Bosworth

UC Berkeley

Rachel Scholes

David Sedlak

Colorado State University

Adrienne Narrowe

Kelly Wrighton REMIFC

SINCE 1933

Bexfield et al., 2020 ES&T

Kolpin et al., 2002 ES&T

Attenuation benefits from synergies in physical, chemical and biological mechanisms

Purification of Water Is Achieved by a Combination of Sunlight (UV) and Biodegradation

- Attenuation rates are 10-100 times faster than in vegetated systems
- Complementary attenuation by photolysis and microbial processes

REMIE

EMERGING CONTAMINANTS

Justin Jasper, UCB

OCTOBER 3-5, 2023

Unexpected role of microbiology in treatment

Photosynthetic "periphyton" Microbial mat (4-15cm thick) Diatoms = primary producers / limited diversity Bacteria = heterotrophic and autotrophic guilds

Zack Jones

Prado Constructed Wetlands: Corona, CA

20

Photo Credit: OCWD

OCTOBER 3-5, 2023

• Influent = Santa Ana River, impaired by nitrified wastewater effluent

REMTE

EMERGING CONTAMINANTS

- Managed by Orange County Water District (OCWD)
- Research cells designed/studied by NSF ERC ReNUWIt

Reproducibly and Rapidly Implemented in Different Locations

Cell 2

∆ Cell 3

--- Cell 1 prediction

---- Cell 2 prediction

Bear et. al. 2018 *Ecol Eng* 109:76

Sam Bear, UCB

Kristin Mikkelson

Diatoms

Jones et. al. 2018. Water Research 133

Trace quantities of contaminants are unlikely to select for desirable metabolic processes; can we go beyond black box treatment?

OCTOBER 3-5, 2023

1ppt = ng/L = 1×10^{-12} There are 5×10^{10} drops of water in an Olympic size swimming pool Growth is supported by mg/L or more: How can we select for desirable attributes?

Ammonia monooxygenase activity enhances pharmaceutical biodegradation in WWT.

Ammonia is toxic to fish; wetlands produce methane

Given analogies between AMO and MMO, could methane oxidation also enhance pharmaceutical attenuation in this wetland?

Xu et al (2016) STOTEN 566:796

Open-Water Wetland

Biomat Depth-Profile

Biogeochemical Depth Gradient

EMERGI

SUN

Zack Jones

Jones et. al. 2017. AEM

Correlation between sulfamethoxazole concentration and abundance of methane-oxidizing gene

EMERGING CONTAMINANTS

EM

Note: mmoXYZ transcripts not detected

OCTOBER 3-5, 2023

Methanotrophs and Methylotrophs are More Abundant Under Methane-Oxidizing Conditions

Methane oxidation (pMMO) promotes SMX biotransformation

Methanotrophic activity also increases nitrate removal: consistent with assimilation (or methylotrophic denitrification)

Vega et al. (2023) ES&T.

 $NO_{3}^{-} + 17CH_{4} + H^{+} + 26O_{2} \rightarrow C_{5}H_{7}O_{2}N + 30H_{2}O + 12CO_{2}$

Conceptual model: Microbial biogeochemical cycling promotes SMX attenuation

Can we use this approach to more effectively construct and/or manage metabolically rich and diverse systems for desirable biodegradation processes (e.g. GHG, nutrients and recalcitrant organics)

Acknowledgements

- ReNUWIt NSF ERC
- Orange County Water District
- The Joint Genome Institute
- The National Institutes For Water Resources
- United States Geological Survey
- Collaborators

pubs.acs.org/est

Methane-Oxidizing Activity Enhances Sulfamethoxazole Biotransformation in a Benthic Constructed Wetland Biomat

Michael A. P. Vega, Rachel C. Scholes, Adam R. Brady, Rebecca A. Daly, Adrienne B. Narrow F. Vanzin, Kelly C. Wrighton, David L. Sedlak, and Jonathan C.

Michael A. P. Vega, Rachel C. Scholes, Adam R. Brady, Rebecca A. Daly, Adrienne B. Narrowe, Lily B. Bosworth. Kelly C. Wrighton, David L. Sedlak, and Jonathan O. Sharp*

Questions?usuusms All Other Conditions CO₂ photosynthesis H₂O 02 0. H,O nitrification [SMX] denitrification CH₄ DOC X Aerobic CH₄ **Oxidizing Conditions**

Article

