Microbial chain elongation: A more efficient process for promoting and sustaining in situ bioremediation of chlorinated solvents

Aide Robles^{1,2}, Peter Bennett¹, Akash Caveney¹, Caleb M. Mclaughlin^{2,3}, Min-Yin (Jacob) Chu¹, Anca Delgado^{2,3}, Michael Calhoun¹

¹ Haley & Aldrich

² School of Sustainable Engineering and the Built Environment, Arizona State University

³ Engineering Research Center for Bio-mediated and Bio-inspired Geotechnics

Site history

- Superfund Site, chlorinated volatile organic compounds (CVOCs) released from leak in below grade wastewater treatment system in 1970's
 - Trichloroethene (TCE), and its breakdown products (*cis*-1,2dichloroethane (*cis*-DCE) and vinyl chloride) are the primary CVOCs detected

- Groundwater extraction (GWE) was the remedy selected in the Record of Decision (ROD)
- In situ bioremediation (ISB) implemented to expedite groundwater treatment
- A pilot test is being implemented to support amending the ROD to replace GWE with ISB

ISB overview

- A network of groundwater injection and extraction wells for delivering electron donor substrates via groundwater circulation
- Three stratigraphic intervals targeted between 10 and 50 feet below grade
- Rapid initial treatment with full scale operation (2006 to 2008) and greater than 10 pore volume (PV) exchanges
- Residual CVOCs treated with a 10-day circulation event targeting one PV circulation volume every 1 – 2 years
 - Former source excavation

A-zone extraction
 A-zone injection
 B-zone extraction
 B-zone injection

Challenges at the in situ bioremediation system

Complete conversion of TCE to ethene, but a degree of rebound occurred between applications, prompting a search for longer lasting substrates...

- Longer-lasting substrates (emulsified oils/lecithin) resulted in:
 - Clogged injection wells
 - Biogenic toluene production
 - High methane concentrations

CVC	0.	.001	
		2	005
Methane			
TCE			
 cDCE			
VC			
Molar Fraction Ethene and E	thane		

Evolving the state of in situ bioremediation with academic collaborations

Min-Ying (Jacob) Chu Haley & Aldrich

Peter J. Bennett Haley & Aldrich

Anca G. Delgado Arizona State University

Microbial Chain Elongation and Subsequent Fermentation of Elongated Carboxylates as H₂-Producing Processes for Sustained Reductive Dechlorination of Chlorinated Ethenes

Aide Robles, Theodora L. Yellowman, Sayalee Joshi, Srivatsan Mohana Rangan, and Anca G. Delgado*

Cite This: Environ. Sci. Technol. 2021, 55, 10398–10410

Microbial chain elongation for resource recovery

All images from: https://www.chaincraft.nl/

organic streams (agriculture waste, food waste, etc.)

butyrate (C4), caproate (C6), butanol, etc. & H₂

5 Ethanol + 3 Acetate⁻ \rightarrow 4 *n*-Butyrate⁻ + H⁺ + 4 H₂O + 2 H₂

(2 Carbon) electron donor (2 Carbon)

(4 Carbon)

Reductive dechlorination

Dehalococcoides mccartyi

Why source H_2 from MCE?

- Reliably produces H₂ without producing CO₂ for methanogenesis
- MCE products (butyrate, butanol, etc.) are fermented for more H₂
- Naturally occurring microbes are commonly found in soil matrices
- Acetate and ethanol are low-cost substrates that are also easy to handle

Initial material screening

 \Box Ethanol \Box Acetate \Box Propionate \Box Butyrate \Box CO₂ \Box CH₄

- Bioremediation relevant MCE (27 mM ethanol & 16.2 mM acetate) substrate concentrations can suppress methanogenesis
- Site groundwater receptive to bioaugmentation
- Shallow site soil contains chain elongating microorganisms not found in treatment zone groundwater

Reductive dechlorination in groundwater

- Microcosms amended with 3.6 mM acetate, 32.4 mM ethanol, and culture demonstrated conversion of *cis*-DCE to ethene
- Adding shallow site soil instead of culture resulted in lower conversion to ethene
- No CO₂ production observed

^{**F**} Day 31 added groundwater

Direct use of MCE products

- Complete conversion of *cis*-DCE to ethene
- Sequential fermentation of caproate and butyrate to acetate and H₂
- Minimal CO₂ and CH₄ production

Time (days)

Two-stage push-pull pilot test

Stage 1: DW-2 Groundwater

3.9 mM acetate, 35 mM ethanol, without bioaugmentation and no VOCs. Test period 3 weeks.

Stage 2: DW-1 Groundwater

Same as above but with VOCs* and bioaugmentation with culture MAT-1. Test period is 5 weeks.

*contains: *cis*-DCE, VC, ethene, and ethane

Push-pull test: Stage 1 w/out bioaugmentation

- Confirmed bench-scale study findings
- Propionate & isobutyrate generated instead of butyrate or caproate (MCE products of ethanol & acetate)
- Acetate generated partly by ethanol oxidation
- Bioaugmentation will be required to drive MCE processes

Push-pull test: Stage 2

- Production of butyrate and trace amounts of isobutyrate, valerate, and isovalerate!
- Less methane generation than with previous amendments
- VOC concentrations lower than expected yet conversion to ethene was achieved

Practical considerations for full field application at this site

- Bioaugmentation with MAT-1 will promote MCE processes
- MCE substrates provide greater and faster H₂ release than conventional substrates
- Expecting ~50% reduction in methane generation
- MCE substrates and products are soluble and do not cause clogging

Acknowledgements

NSF

Non-Academic Research Internships for Graduate Students (INTERN)

Min-Ying (Jacob) Chu

Haley & Aldrich

Maxwell I. Silverman Arizona State University

Thank you for listening! Questions?

Aide Robles, Ph.D., E.I.T.

Haley & Aldrich 602.809.2371 arobles@haleyaldrich.com

Solid Phase Colloidal Organic Amendments Promote Sustained Biodegradation in Permeable Reactive Barriers

Background

Activated carbon-based PRBs:

- Intercept groundwater plumes
- Retard downgradient contaminant migration

R&D efforts produced:

- Plant-based, sub-micron, fermentable bioremediation amendment
- Sustains in-situ bioremediation within a PRB
- Co-injectable with activated carbon at low pressures

Discussed in the Poster

- AquiFix
- Treatability Study and Results
- Longevity Experiment
- Field-Scale Case Study and Results

John Freim, Ph.D.

Director of Materials Science and ZVI Product Manager REGENESIS

jfreim@regenesis.com

Source Area BioRemediation in Fractured Bedrock with Karst Features Revisited as Sustainable and Resilient Remediation

ERM

- A manufacturing facility operating in central Pennsylvania experienced releases of tetra and trichloroethene through leaking underground waste storage tanks (UST) that were installed on top of fractured bedrock.
- Initial investigation identified shallow saprolite soil impact and GW impact to depths of ~250' bgs
- HRSC including sorbers identified elevated concentrations of TCE and degradation products ir the bedrock aquifer at depths of ninety-five to almost two-hundred feet below ground surface (bgs) at concentrations exceeding 300,000 µg/L.
- Semi-quantitative sustainability assessment was conducted comparing pump and treat, thermal, in situ chemical oxidation and in situ bioremediation

Source Area Bioremediation in Fractured Bedrock with Karst Features Revisited as Sustainable and Resilient Remediation

- Remedy included installation of 18 injection well clusters focused in the source area and downgradient as a biobarrier
- Injection well clusters installed from 95 to 170' bgs starting in 2014 with injections every 3 years
- Injected an 8% emulsified vegetable oil solution using groundwater from well development
- Also bioaugmented with DHC consortium after reducing conditions were established
- 12 bioborings installed in DNAPL source area and immediately downgradient in 2021
 Bioborings installed from 100' to a
 - Bioborings installed from 100' to a depth of 120' bgs

