Enhanced Bioremediation of Contaminated Soils using Sustainable Soil Amendments

Fayaz Lakhwala, Ph.D. and Alan Seech, Ph.D., EVONIK Corporation

Oct 5, 2023 | RemTEC & Emerging Contaminants Summit, Westminster, CO, USA

Field-Proven Portfolio of Remediation Technologies

Chemical Oxidation

- Klozur[®] Persulfate Portfolio
 - Klozur® SP
 - Klozur[®] KP
 - Klozur® One
 - Klozur® CR
- Hydrogen Peroxide

Aerobic Bioremediation

- Terramend[®] Reagent
- PermeOx[®] Ultra
- PermeOx[®] Ultra Granular

Metals Remediation

• MetaFix[®] Reagents

Chemical Reduction

- EHC[®] ISCR Portfolio
 - EHC[®] Reagent
 - EHC[®] Liquid
 - EHC[®] Plus
- Daramend[®] Reagent

Enhanced Reductive Dechlorination

- ELS[®] Microemulsion
- ELS[®] Liquid Concentrate
- ELS[®] Dry Concentrate

BioGeoChemical

• GeoForm[®] Reagents

Agenda

- 1. The Problem and The Opportunity
- 2.Sustainable Reagents for Aerobic and Anaerobic
 - Bioremediation
 - ✓ Composition of Terramend[®] Carbon & Terramend[®] Inorganic reagents
 - $\checkmark \mbox{Composition of Daramend^{\ensuremath{\$}}}$ and Daramend^{\ensuremath{\\$}} Plus Reagents
 - ✓ Compare and Contrast with traditional fertilizer-based approach
 - ✓ Microbiology & Biochemistry during soil treatment

3. Bench and results

The Problem

- Traditional approach relies on supplying nitrogen and phosphorus at an "optimized" C:N:P ratio to support biodegradation of targeted hydrocarbons (PAHs, TPH, CP)
- Typical amendments used include commercial and agricultural fertilizers
- This approach fails frequently as inorganic nutrients are used rapidly when bioavailable, and are lost through wasteful processes including luxury consumption, denitrification, and precipitation
- The fertilizer approach also fails to address the issues of acute microbial toxicity and inadequate bioavailable water
- Soil volume increases post-treatment due to the addition of bulking agents

The Opportunity

Overcome inefficiencies in the traditional approach by using specialized soil amendments that provide nutrients, increase bioavailable water, and protect soil microorganisms from high acute toxicity.

- Sustainable amendments capable of creating the optimal conditions for degradation
- Capable of treating high concentrations of contaminants while overcoming acute toxicity to indigenous microbes
- Allows balance between soil water content (bioavailable water) and the ability to maintain aerobic conditions

Lower overall remediation costs

Terramend® Carbon and Terramend® Inorganic Reagents

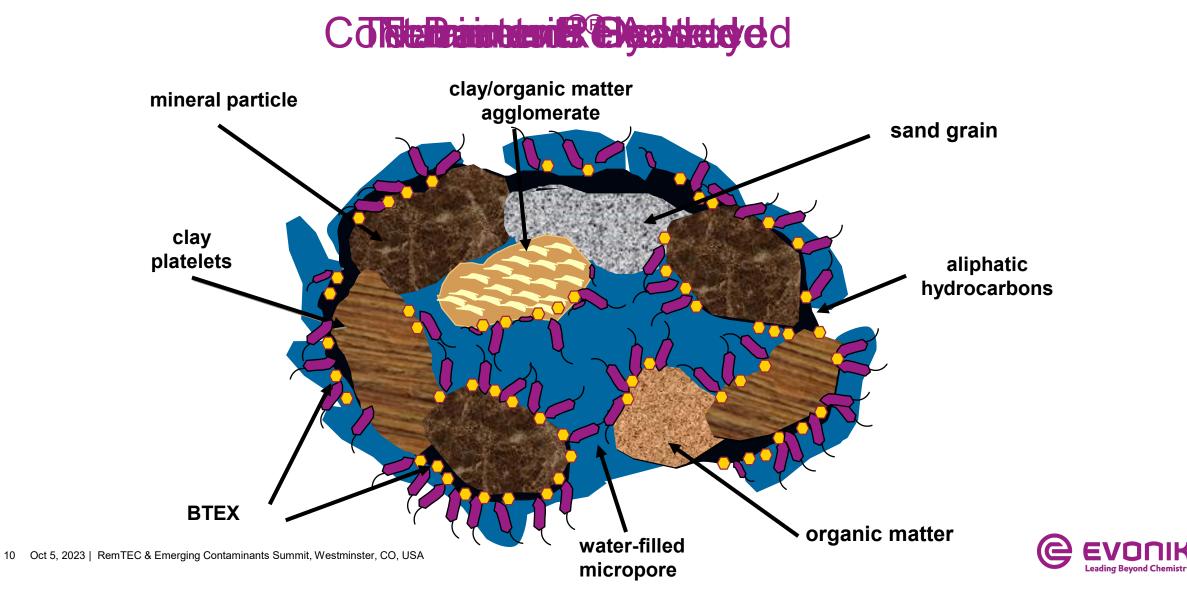
Attribute	Terramend [®] Carbon	Terramend [®] Inorganic
High Surface Area Hydrophilic Plant Fiber	\checkmark	\checkmark
Slow-release Organic Carbon & Nutrients (N, P, S)	\checkmark	\checkmark
Inorganic Nitrogen & Phosphorus	- (\checkmark
Emulsifying Agent	\checkmark	\checkmark
pH Balanced	\checkmark	\checkmark

- Both formulations are designed to stimulate the growth of aerobic microorganisms in soil by providing an effective blend of organic carbon, amino acids, and organic nitrogen and phosphorus.
- Terramend Carbon treats PAHs, phthalates, and chlorophenols (including PCP).
- Terramend Inorganic treats BTEX, GRO, DRO, and TPH.

Daramend® and Daramend® Plus Reagents

Attribute	Daramend®	Daramend [®] Plus
High Surface Area Hydrophilic Plant Fiber	\checkmark	\checkmark
Rapid-release Organic Carbon & Nutrients (N, P, S)	\checkmark	\checkmark
Emulsifying Agent	\checkmark	\checkmark
pH Balanced	\checkmark	\checkmark
Microscale ZVI	\checkmark	\checkmark
Activated Carbon	_	\checkmark

- For the treatment of chlorinated pesticides, herbicides, organic explosives, chlorinated solvents and heavy metals.
- Creates anaerobic and reducing conditions


Distinguishing Features of the Terramend® Reagents

- Prevents formation of large, dense aggregates, with anoxic centers, as often seen with other soil bioremediation technologies
- Small particle size and hydrophilic nature
 - Requires a relatively small dosage to achieve a large increase in soil water holding capacity (WHC) and bioavailable water
 - -Makes the soil easier to handle
 - -Reduces the need to collect and treat free water
- Processed from plant materials rich in cellulose and hemicellulose, with very little lignin (unlike wood chips/saw dust that are high in lignin content)
 - -Readily biodegradable
 - Does not bind contaminants in a manner that shields them from biodegradation
- Works effectively at lower dosages
 - 1% to 5% by wt. of soil as opposed to 10% to 20% by wt. of saw dust, wood chips, or other common bulking agents

How does Terramend[®] Work?

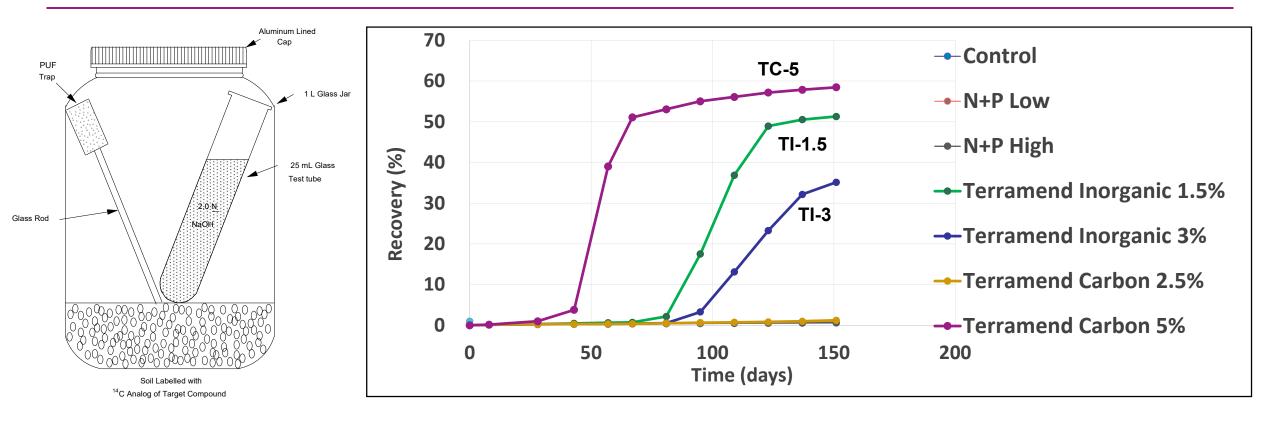
How do I use Terramend[®] Reagents?

In-situ treatment of surface soil (0 – 24" bgs)

On-site treatment of excavated soil in HDPElined biocell

On-site treatment of excavated soil in mixed biopiles

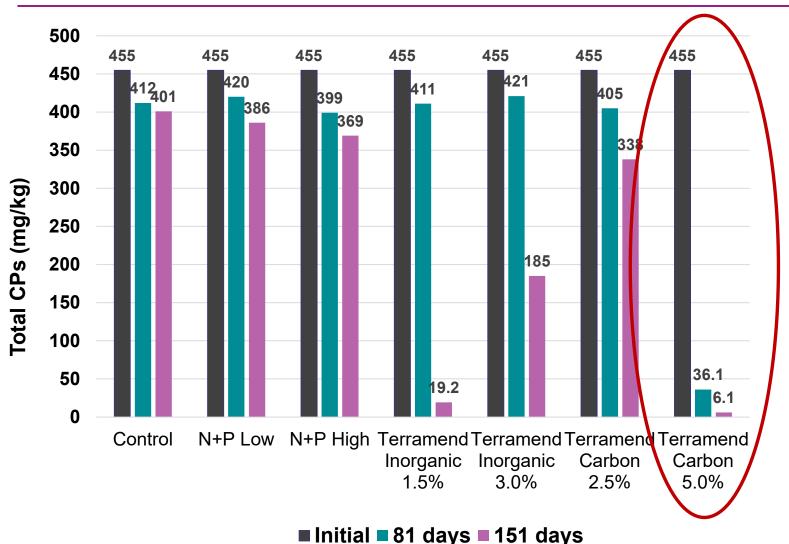
On-site treatment of excavated soil in aerated biopiles



Bench-scale Treatability Testing

- ✓ Objectives
- ✓ Methodology
- ✓ Results for PCP, and Petroleum Hydrocarbons

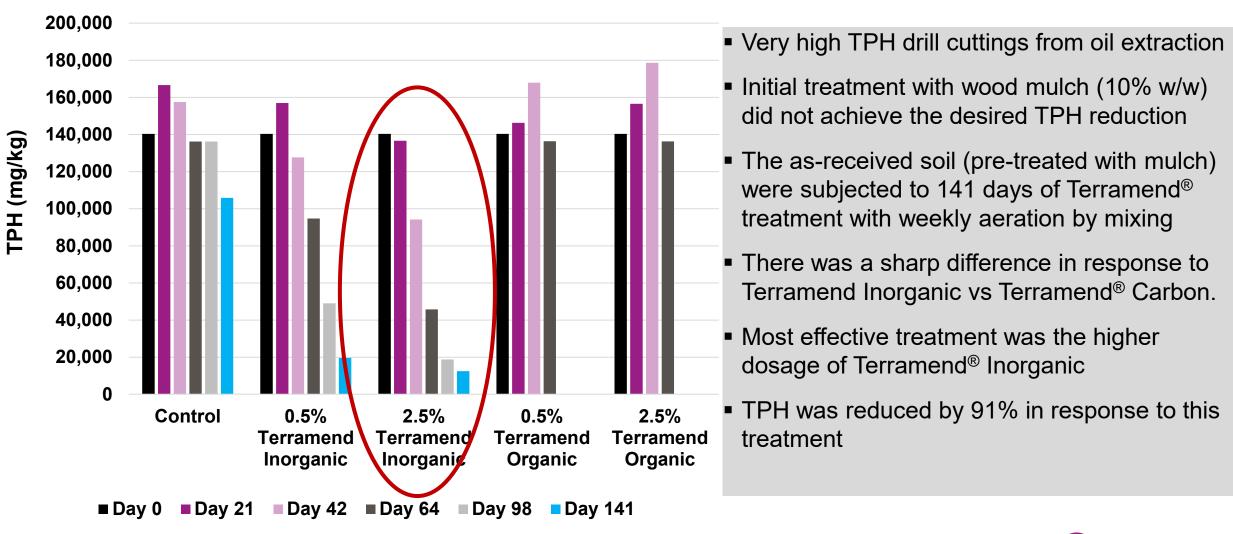
Bench-scale Treatability Testing for PCP in Soil Mineralization of ¹⁴C-PCP to ¹⁴C-CO₂



- Documents complete biodegradation of PCP
- Compares performance of reagents and dosages
- Hydrophobic soil with acutely toxic COI
- Terramend[®] Carbon at 5% w/w performed best
- Poor response to both N+P nutrient treatments

Bench-scale Treatability Testing for PCP in Soil

Total Extractable Chlorinated Phenols



- Strong correlation between mineralization of ¹⁴C-PCP and reduction in total soil PCP
- Treatment that supported greatest conversion of PCP to CO₂ also achieved lowest residual PCP concentrations
- Higher dose of slowly-released Terramend Carbon provided optimal moisture without turning soil anaerobic
- Inorganic N+P was ineffective regardless of dosage

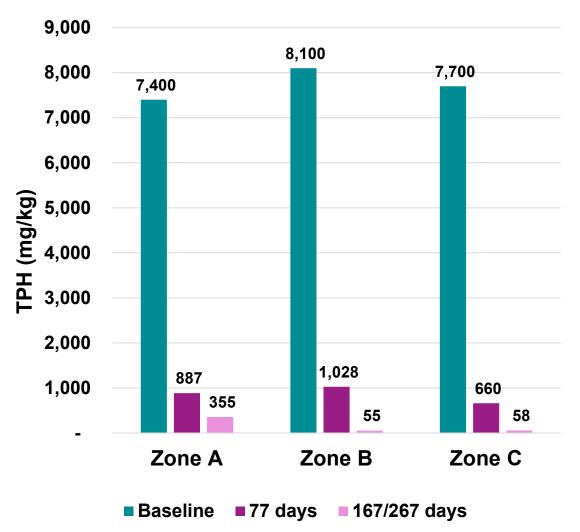
Bench-scale Treatability Testing

Terramend[®] Treatment of Stabilized Drill Cuttings

Project Snapshots

- 1. Terramend[®] Inorganic Treatment of Aged Hydraulic Oil and Diesel Fuel
- 2. Terramend Carbon Treatment of Bis(2-ethylhexyl) Phthalate
- 3. Terramend Carbon Treatment of PAHs, PCP, and Mineral Oil TPH
- 4. Terramend[®] Carbon Treatment of MGP PAHs

Project Snapshot #1


Terramend[®] Inorganic Ex-Situ Treatment of Hydraulic Oil & Diesel Fuel

- Midwest Industrial site
- Former agricultural equipment repair facility
- Approximately 4,400 tons of soil treated on-site
- Terramend[®] reagent cost was about \$39 /ton of treated soil.

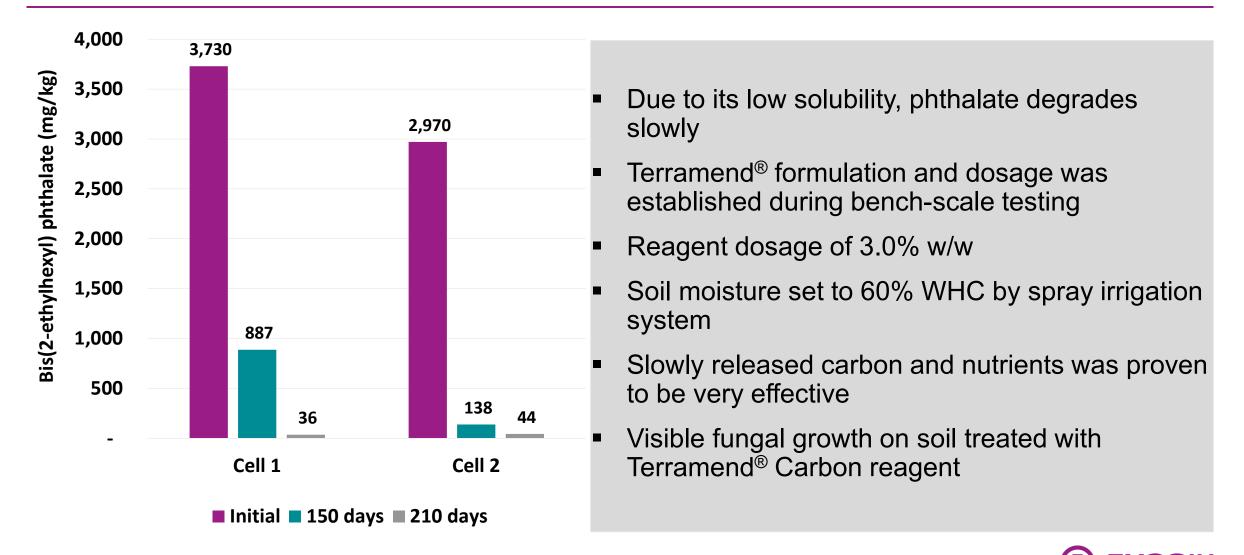
Bioremediation of Hydraulic Oil + Diesel Fuel Contaminated Soil with Terramend[®] Inorganic Reagent

On-Site Treatment of Industrial Soil

- 4,400 tons treated in HDPE-lined biocell with soil in a 24" (60 cm) layer
- Hydraulic oil and diesel fuel (C₁₆ C₃₅)
- Calcareous sandy loam, neutral pH, low organic matter
- Terramend[®] Inorganic dosage of 3.0% w/w in split application (2.0% at start and 1.0% on day 90)
- Soil water content maintained near 60% WHC
- Aeration by tillage twice weekly for the first month, with tillage reduced to weekly thereafter
- Each data point represents the mean of 5 composite samples with each composite created by blending 10 grab samples from full depth of treatment

Project Snapshot #2

Terramend[®] Carbon On-Site Treatment of Phthalates in Excavated Soil


- Industrial site in eastern New Jersey
- Former chemical industry facility
- Approximately 600 tons of soil treated on-site
- Two 300-ton batches in biocell
- Terramend[®] reagent cost was about \$36 /ton of treated soil.

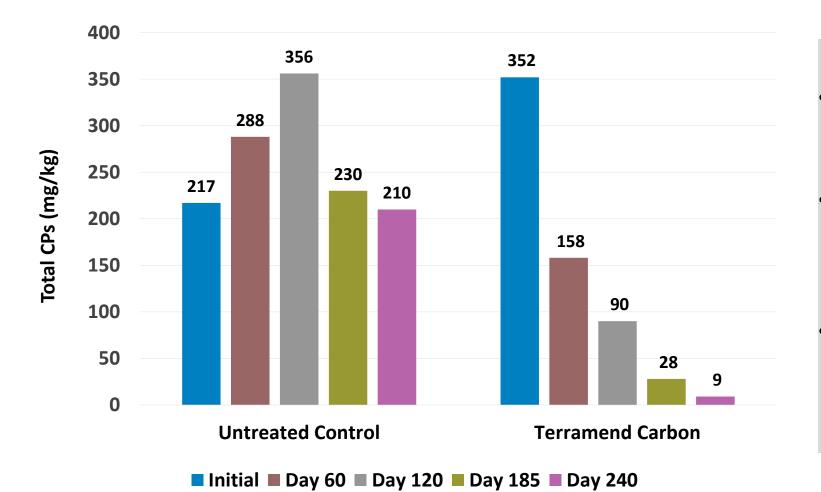
Terramend® Organic Treatment of Bis(2-ethylhexyl) Phthalate

(Ex-situ On-Site Treatment in New Jersey)

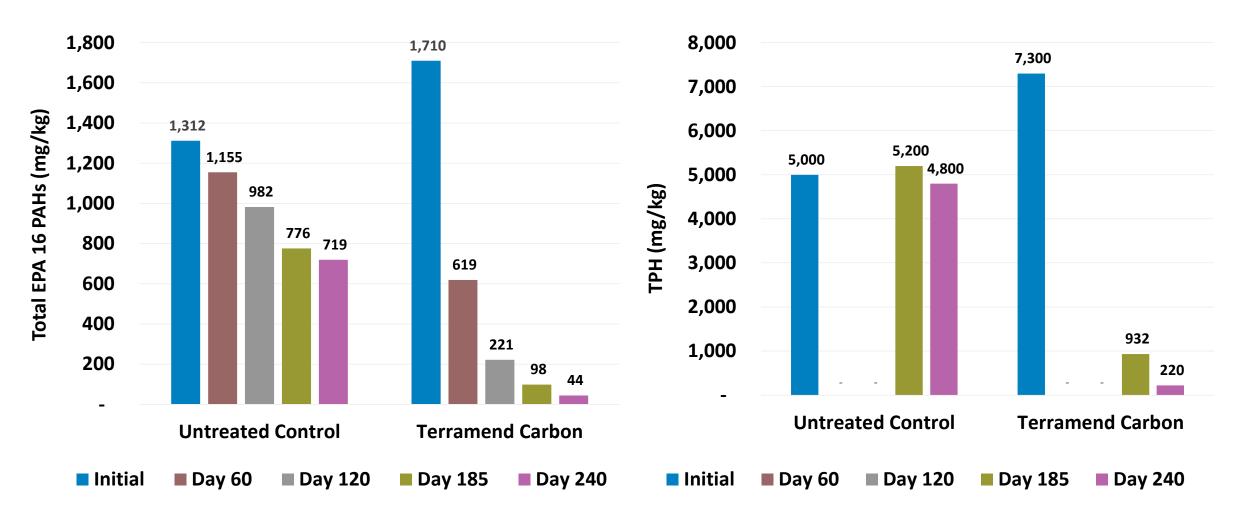
Project Snapshot #3

Terramend[®] Carbon

Ex-Situ Treatment of PAHs, PCP, and Petroleum Hydrocarbons



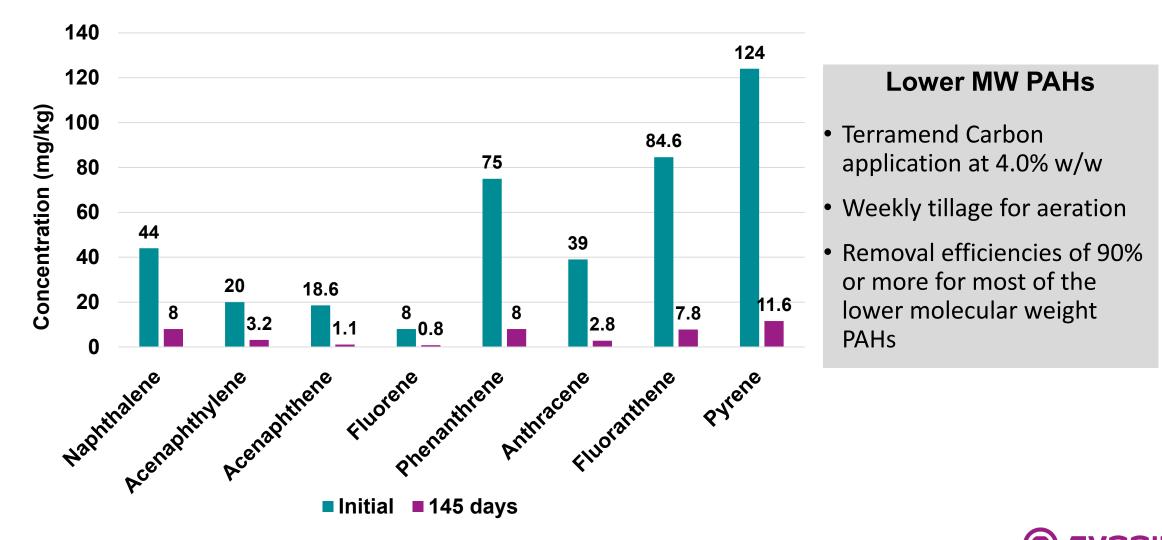
- Industrial Wood Preserving Site in operation since 1950
- Pressure treatment using creosote, PCP and mineral oil
- On-site treatment of excavated soil in HDPE-lined cell
- 1,200 tons/year in batch system over three years
- Terramend[®] reagent cost was about \$24 /ton of treated soil for the lightly impacted soil and about \$48/ton of treated soil for the heavily impacted soil.


Ex-Situ Bioremediation of PCP-impacted Wood Treatment Soil with Terramend[®] Carbon

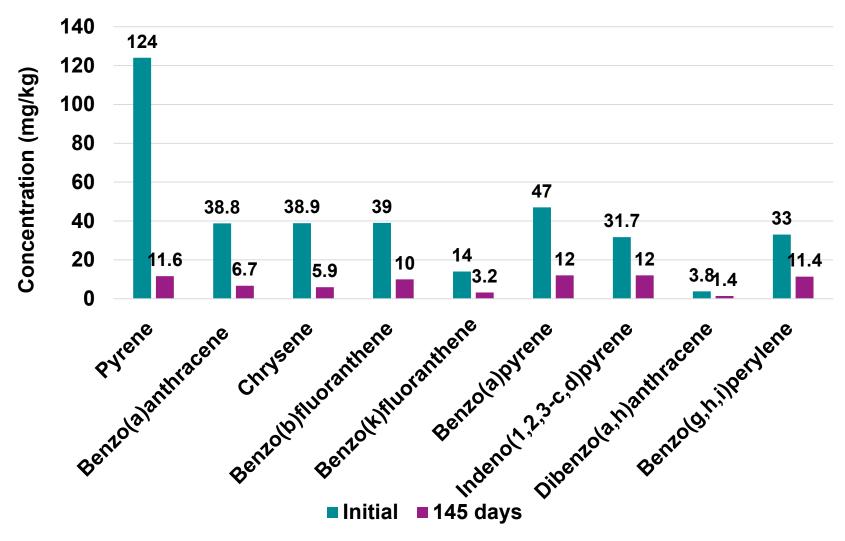
- Treatment cell was covered to extend treatment season in a cool climate area
- First batch included monitoring of untreated control soil simultaneous with Terramend[®] Carbon treated soil
- Also treated 4,800 tons of lightly impacted soil in-situ (0 – 60 cm bgs)

Treatment of PAHs and Petroleum Hydrocarbons

Project Snapshot #4 Terramend[®] Carbon Ex-Situ Treatment of PAHs at MGP Site



- Pacific Northwest Manufactured Gas Plant Site
- On-site treatment of excavated soil in a bio-cell
- Terramend[®] reagent cost was about \$72/ton of treated soil.


Ex-situ Terramend® Treatment of PAHs

Pacific Northwest MGP Site

Ex-situ Terramend® Treatment of PAHs

Pacific Northwest MGP Site

Higher MW PAHs

- Good treatment efficiency on even high molecular weight PAHs
- Removal efficiencies between 60% and 85% for most of the higher MW PAHs
- Somewhat lower removal efficiency than for creosote soils
- Possibly related to acute soil toxicity

Why should I use Terramend[®] Reagents?

Allows In-situ or On-site Treatment of Soils Contaminated with TPH, PAH, PCP, phthalates, and certain pesticides: Ideal for both in-situ treatment of surface soil and on-site treatment of excavated soils by tilling or in mechanically-aerated biopiles.

Substantial Cost Savings: Eliminates excavation where applicable, transportation, and off-site disposal resulting in remediation costs that are less than half of the next best alternative treatment.

Preserve, Protect & Reuse Soil: In-situ and on-site treatment allows soil to remain on-site for revegetation or used in construction.

Sustainable Remediation: Terramend[®] reagents provide a sustainable form of remediation from the perspectives of carbon footprint and recycling of agricultural and industrial process byproducts.

>Excellent 25-year track record in many field-scale applications

Alternative to Landfill Disposal

Beneficial On-Site Reuse of Soil

Terramend[®] Case Studies

- ✓ PAHs
- ✓ PCP
- ✓ Bunker Oil
- ✓ Diesel Fuel
- ✓ Phthalates
- ✓ Wood Preserving Sites
- ✓ MGP Sites

Daramend[®] Case Studies

- ✓ Lindane & other BHCs
- ✓ Chlordane
- ✓ Dieldrin
- ✓ Toxaphene
- ✓ 2,4-D & 2,4,5-T
- ✓ TNT & DNT
- ✓ RDX
- ✓ HMX
- ✓ Tetryl
- ✓ TCE & PCE
- ✓ PCE
- ✓ 1,2-DCA
- ✓ CT & CF

Fayaz Lakhwala, Ph.D. Soil & Groundwater Remediation Evonik Corporation E. fayaz.lakhwala@evonik.com T. +1 908 613 2443

"Sustainability is at the core of futurizing our business"

