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Our expertise is combined reactions; what do we mean by that?
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Electron donors can be
contaminants or labile substrates

L [ ]
3 Oxidized s
\ Humic iy
N Substance . .Fef g
(e~ donor), ™ | a- ; B 1 a0 -'.
S TR T
| B N [ > /N

Reduced ot

/ Humic |'r\\ A
/ Substance Y Vi
Bacterium | - Fe*? oxid
;" (e~accepto
'_ L"r-.""\_\__. e-

Reduced extracellular electron shuttles can
transfer electrons to electronegative

contaminants (organic and inorganic
compounds)



Presenter
Presentation Notes
1 minute


Some combined reactions discovered by Dr. Man Jae Kwon:
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Kwon and Finneran , Biodegradation, 2008 , V19(5), Page 705
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Over 1,200 sites in the U.S. and 2,000 sites in Europe
have been contaminated by explosives

0N P NG, e N i
N v \NAN/ 02N NOg
L ) < > Explosive | Molecular Solubility in Reduction
T mass [g/mol] | water [g/fL] potential [V]
NG, AN RDX 22212 389 mg/L (low |-055
RDX EL Nz to negligible)
€4HeN;0 HMX NO;
. ™ HMX 296.16 6.63 mg/L (low) | -0.66
CoHsN;O, THT 22713 insoluble N/A
i (eks NTO 130.07 128 N/A
Y )J\ " NOy NH DHAN 158.13 sparingly -0.40
—y N soluble
>:Nf o - No; NQ 104.07 3 -0.70
N NQ
NTO HO, CH4N,0,
CiHN,O, DNAN
CoHaN,0s

X may damage the central nerve system (the lifetime health advisory in drinking water is
4mg/l)

\such as 2,4-dinitroaniosole and 3-nitro-1,2,4-triazole-5-one (NTO) are currently being
pstigated in novel explosives composites for DoD use

Niedzwiecka and Finneran , RSC ES:WR&T, 2015, V1(1), Page 34-39
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GAC sorbs
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Pump and treat using granular
activated carbon (GAC), the most
common form of porous carbon, is
the “de facto” treatment strategy
utilized in RDX remediation.

Adsorption of over 12% (w/w) RDX
per GAC constitutes an explosive
hazard; therefore, carbon must be
continually replaced.

The spent carbon is typically treated
as hazardous waste and landfilled.
This process is very costly.
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Electrons are added to sorbed RDX

atment Approach 1 (T-1): Chemical Reduction System
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Adsorption of RDX to GAC and HCHO production from AH,QDS amendment
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Millerick and Finneran, 2013, ES&T 47: 8743-8750



Post-treatment RDX recovered from GAC after extracting with 100% EtOH
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Systems that incorporate both quinone and quinone-reducing
bacteria consistently reduce RDX
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H, + Acetate Amended (High Carbon Loading)
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Adsorption Studies, Low to High Carbon Loading
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Concentraion {pumol}

Concentraion (pmol}
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Is the optimal activity mediated by Fe(lll) reduction and the initial reduciton to cis-DCE?
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In situ activated carbon is very good at sorbing contaminants
(which was expected); however, data are lacking as to
effectiveness with secondary degradation reactions

Data indicate that RDX (and other nitfrated explosives) may be
good candidates for use with activated carbon

Data indicate that TCE is a poor candidate for use with high
masses of in situ activated carbon — the complete reductive
dechlorination pathway is inhibited, most likely by mass transfer
limitations

Conclusions

Lower masses do not inhibit TCE reduction (complete), and it is
possible it is stimulatory at specific mass/volumes loadings (which
may be lower than typically applied)

Data again suggest that Fe(lll) reduction and dechlorination are
linked, this time via cis-DCE generation

All strategies have a time & place - the goal is to refine each
strategy and/or technology so it is most effective on a site-specific
basis
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